By browsing this website, you acknowledge the use of a simple identification cookie. It is not used for anything other than keeping track of your session from page to page. OK
1

Adapting the European Union AI Act to deal with generative artificial intelligence. 19/07/2023

Bookmarks
Book

Marcus, J. Scott

Bruegel, Brussels

Bruegel - Brussels

2023

8 p.

artificial intelligence ; EU policy ; EU law

EU countries

Law

https://www.bruegel.org/analysis/adapting-european-union-ai-act-deal-generative-artificial-intelligence

English

Bibliogr.

"When the European Commission in April 2021 proposed an AI Act to establish harmonised EU-wide harmonised rules for artificial intelligence, the draft law might have seemed appropriate for the state of the art. But it did not anticipate OpenAI's release of the ChatGPT chatbot, which has demonstrated that AI can generate text at a level similar to what humans can achieve. ChatGPT is perhaps the best-known example of generative AI, which can be used to create texts, images, videos and other content.

Generative AI might hold enormous promise, but its risks have also been flagged up 1 . These include (1) sophisticated disinformation (eg deep fakes or fake news) that could manipulate public opinion, (2) intentional exploitation of minorities and vulnerable groups, (3) historical and other biases in the data used to train generative AI models that replicate stereotypes and could lead to output such as hate speech, (4) encouraging the user to perform harmful or self-harming activities, (5) job losses in certain sectors where AI could replace humans, (6) ‘hallucinations' or false replies, which generative AI can articulate very convincingly, (7) huge computing demands and high energy use, (8) misuse by organised crime or terrorist groups, and finally, (9) the use of copyrighted content as training data without payment of royalties.

To address those potential harms, it will be necessary to come to terms with the foundation models that underlie generative AI. Foundation models, or models through which machines learn from data, are typically trained on vast quantities of unlabelled data, from which they infer patterns without human supervision. This unsupervised learning enables foundation models to exhibit capabilities beyond those originally envisioned by their developers (often referred to as ‘emergent capabilities')..."

Digital



Bookmarks