By browsing this website, you acknowledge the use of a simple identification cookie. It is not used for anything other than keeping track of your session from page to page. OK

Documents Environmental Sciences Europe 4 results

Filter
Select: All / None
Q
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Environmental Sciences Europe - vol. 26

"Background

For nanomaterials, not only their chemical composition but also their morphological properties and surface properties determine their characteristics. These properties do not only differ in comparison to the corresponding bulk material but also between different nanoforms of the same substance. Changes in these physico-chemical characteristics can cause changes in chemical properties, reactivity, (photo-) catalytic activities and energetic properties and in turn alter their (eco-) toxicity, fate and behaviour in environmental media and toxico-kinetics. Registration, Evaluation, Authorisation and Restriction of Chemicals (REACH) deals with chemical substances in general and although there are no special provisions that explicitly refer to nanomaterials, they are principally covered by REACH. In October 2012, the European Commission published the Second Regulatory Review on Nanomaterials. In February 2013, the REACH Review from the European Commission was published. Both papers address questions about the regulation of nanomaterials in REACH. The Commission proposes to improve the future situation by adaptation of the REACH Regulation. However, the European Commission plans to revise the annexes only and not the main text of the regulation.

Results and conclusions

In this publication, the authors present their considerations and recommendations on how REACH can adequately be adapted to nanomaterials. In the author's view, the bulk form and nanoforms of the same chemical composition should be treated as the same substance in the context of REACH. However, the regulation of nanomaterials under REACH has to meet specific requirements. Taking into account the plurality of physico-chemical characteristics and resulting changes in the hazard profile, an approach must be found to adequately cover nanomaterials under REACH. Accordingly, the REACH information requirements have to be adapted. This includes lower tonnage thresholds for different REACH obligations (e.g. registration, chemical safety report) which are justified by highly dispersed use together with low mass application, linked with the uncertainties regarding (eco-) toxicity, environmental fate and exposure. If the physico-chemical characteristics of different nanoforms of the same substance differ in a relevant manner they have to be considered separately for further test performance and REACH requirements."
"Background

For nanomaterials, not only their chemical composition but also their morphological properties and surface properties determine their characteristics. These properties do not only differ in comparison to the corresponding bulk material but also between different nanoforms of the same substance. Changes in these physico-chemical characteristics can cause changes in chemical properties, reactivity, (photo-) catalytic activities and ...

More

Bookmarks
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Environmental Sciences Europe - vol. 26

"Major accident regulations aim at protecting the population and the environment from possible accidental releases of chemicals. To achieve this goal, the regulations need to be reassessed in light of the development of new technologies. A currently rapidly growing new technology is nanotechnology, and engineered nanomaterials (ENM) are already produced and used in commercial products. The aim of this work was therefore to evaluate the current knowledge on human and ecotoxicology of ENM and their release and behavior in the environment in the context of major accident prevention. Nano-specific release paths are not to be expected. The established safety standards in the chemical industry are also applicable to ENM, especially the separate storage of flammable solvents and detention reservoirs. The potential of a release to the environment of ENM in powder form is larger than for suspensions; however, it can be minimized by safety measures established for conventional dusts. The considered human toxicology studies show that to date not conclusive enough answers regarding the toxicity of ENM can be made. The effects are dependent not only on the material itself but more on the functionalization, surface reactivity, size, and form. The acute ecotoxicity of ENM seems to be similar to the one of the corresponding microparticles (TiO2) or the respective dissolved ions (Ag, Zn) with the exception of photocatalytically active nano-TiO2, which has an increased toxicity. In order to guarantee that all ENM are included in the existing major accident regulations, different classification options are possible and the advantages and disadvantages are discussed. An important step will be the compulsory inclusion of nano-specific data in the Material Safety Data Sheets that serve as the basic medium to transfer information from the manufacturer to downstream users and authorities. We also call for a regular monitoring of the production and uses for ‘high production volume ENM' that could have the largest implications for major accident regulations."
"Major accident regulations aim at protecting the population and the environment from possible accidental releases of chemicals. To achieve this goal, the regulations need to be reassessed in light of the development of new technologies. A currently rapidly growing new technology is nanotechnology, and engineered nanomaterials (ENM) are already produced and used in commercial products. The aim of this work was therefore to evaluate the current ...

More

Bookmarks
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Environmental Sciences Europe - vol. 30 n° 1 -

"The numbers of potential neurotoxicants in the environment are raising and pose a great risk for humans and the environment. Currently neurotoxicity assessment is mostly performed to predict and prevent harm to human populations. Despite all the efforts invested in the last years in developing novel in vitro or in silico test systems, in vivo tests with rodents are still the only accepted test for neurotoxicity risk assessment in Europe. Despite an increasing number of reports of species showing altered behaviour, neurotoxicity assessment for species in the environment is not required and therefore mostly not performed. Considering the increasing numbers of environmental contaminants with potential neurotoxic potential, eco-neurotoxicity should be also considered in risk assessment. In order to do so novel test systems are needed that can cope with species differences within ecosystems. In the field, online-biomonitoring systems using behavioural information could be used to detect neurotoxic effects and effect-directed analyses could be applied to identify the neurotoxicants causing the effect. Additionally, toxic pressure calculations in combination with mixture modelling could use environmental chemical monitoring data to predict adverse effects and prioritize pollutants for laboratory testing. Cheminformatics based on computational toxicological data from in vitro and in vivo studies could help to identify potential neurotoxicants. An array of in vitro assays covering different modes of action could be applied to screen compounds for neurotoxicity. The selection of in vitro assays could be guided by AOPs relevant for eco-neurotoxicity. In order to be able to perform risk assessment for eco-neurotoxicity, methods need to focus on the most sensitive species in an ecosystem. A test battery using species from different trophic levels might be the best approach. To implement eco-neurotoxicity assessment into European risk assessment, cheminformatics and in vitro screening tests could be used as first approach to identify eco-neurotoxic pollutants. In a second step, a small species test battery could be applied to assess the risks of ecosystems."
"The numbers of potential neurotoxicants in the environment are raising and pose a great risk for humans and the environment. Currently neurotoxicity assessment is mostly performed to predict and prevent harm to human populations. Despite all the efforts invested in the last years in developing novel in vitro or in silico test systems, in vivo tests with rodents are still the only accepted test for neurotoxicity risk assessment in Europe. ...

More

Bookmarks
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Environmental Sciences Europe - vol. 34

"The objective of this study was to identify which air pollutants, atmospheric variables and health determinants could influence COVID-19 mortality in Spain. This study used information from 41 of the 52 provinces in Spain (from Feb. 1, to May 31, 2021). Generalized Linear Models (GLM) with Poisson link were carried out for the provinces, using the Rate of Mortality due to COVID-19 (CM) per 1,000,000 inhabitants as dependent variables, and average daily concentrations of PM10 and NO2 as independent variables. Meteorological variables included maximum daily temperature (Tmax) and average daily absolute humidity (HA). The GLM model controlled for trend, seasonalities and the autoregressive character of the series. Days with lags were established. The relative risk (RR) was calculated by increases of 10 g/m3 in PM10 and NO2 and by 1 ℃ in the case of Tmax and 1 g/m3 in the case of HA. Later, a linear regression was carried out that included the social determinants of health.
Results
Statistically significant associations were found between PM10, NO2 and the CM. These associations had a positive value. In the case of temperature and humidity, the associations had a negative value. PM10 being the variable that showed greater association, with the CM followed of NO2 in the majority of provinces. Anyone of the health determinants considered, could explain the differential geographic behavior.
Conclusions
The role of PM10 is worth highlighting, as the chemical air pollutant for which there was a greater number of provinces in which it was associated with CM. The role of the meteorological variables—temperature and HA—was much less compared to that of the air pollutants. None of the social determinants we proposed could explain the heterogeneous geographical distribution identified in this study."
"The objective of this study was to identify which air pollutants, atmospheric variables and health determinants could influence COVID-19 mortality in Spain. This study used information from 41 of the 52 provinces in Spain (from Feb. 1, to May 31, 2021). Generalized Linear Models (GLM) with Poisson link were carried out for the provinces, using the Rate of Mortality due to COVID-19 (CM) per 1,000,000 inhabitants as dependent variables, and ...

More

Bookmarks