By browsing this website, you acknowledge the use of a simple identification cookie. It is not used for anything other than keeping track of your session from page to page. OK

Documents Kreyling, Wolfgang G. 3 results

Filter
Select: All / None
Q
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Nature Nanotechnology - vol. 10 n° 7 -

"Inorganic nanoparticles are frequently engineered with an organic surface coating to improve their physicochemical properties, and it is well known that their colloidal properties1 may change upon internalization by cells. While the stability of such nanoparticles is typically assayed in simple in vitro tests, their stability in a mammalian organism remains unknown. Here, we show that firmly grafted polymer shells around gold nanoparticles may degrade when injected into rats. We synthesized monodisperse radioactively labelled gold nanoparticles (198Au) and engineered an111In-labelled polymer shell around them. Upon intravenous injection into rats, quantitative biodistribution analyses performed independently for 198Au and 111In showed partial removal of the polymer shell in vivo. While 198Au accumulates mostly in the liver, part of the 111In shows a non-particulate biodistribution similar to intravenous injection of chelated 111In. Further in vitrostudies suggest that degradation of the polymer shell is caused by proteolytic enzymes in the liver. Our results show that even nanoparticles with high colloidal stability can change their physicochemical properties in vivo."
"Inorganic nanoparticles are frequently engineered with an organic surface coating to improve their physicochemical properties, and it is well known that their colloidal properties1 may change upon internalization by cells. While the stability of such nanoparticles is typically assayed in simple in vitro tests, their stability in a mammalian organism remains unknown. Here, we show that firmly grafted polymer shells around gold nanoparticles may ...

More

Bookmarks
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
V

Inhalation toxicology - vol. 16 n° 6-7 -

"Ultrafine particles (UFP, particles <100 nm) are ubiquitous in ambient urban and indoor air from multiple sources and may contribute to adverse respiratory and cardiovascular effects of particulate matter (PM). Depending on their particle size, inhaled UFP are efficiently deposited in nasal, tracheobronchial, and alveolar regions due to diffusion. Our previous rat studies have shown that UFP can translocate to interstitial sites in the respiratory tract as well as to extrapulmonary organs such as liver within 4 to 24 h postexposure. There were also indications that the olfactory bulb of the brain was targeted. Our objective in this follow-up study, therefore, was to determine whether translocation of inhaled ultrafine solid particles to regions of the brain takes place, hypothesizing that UFP depositing on the olfactory mucosa of the nasal region will translocate along the olfactory nerve into the olfactory bulb. This should result in significant increases in that region on the days following the exposure as opposed to other areas of the central nervous system (CNS). We generated ultrafine elemental (13)C particles (CMD = 36 nm; GSD = 1.66) from [(13)C] graphite rods by electric spark discharge in an argon atmosphere at a concentration of 160 microg/m(3). Rats were exposed for 6 h, and lungs, cerebrum, cerebellum and olfactory bulbs were removed 1, 3, 5, and 7 days after exposure. (13)C concentrations were determined by isotope ratio mass spectroscopy and compared to background (13)C levels of sham-exposed controls (day 0). The background corrected pulmonary (13)C added as ultrafine (13)C particles on day 1 postexposure was 1.34 microg/lung. Lung (13)C concentration decreased from 1.39 microg/g (day 1) to 0.59 microg/g by 7 days postexposure. There was a significant and persistent increase in added (13)C in the olfactory bulb of 0.35 microg/g on day 1, which increased to 0.43 microg/g by day 7. Day 1 (13)C concentrations of cerebrum and cerebellum were also significantly increased but the increase was inconsistent, significant only on one additional day of the postexposure period, possibly reflecting translocation across the blood-brain barrier in certain brain regions. The increases in olfactory bulbs are consistent with earlier studies in nonhuman primates and rodents that demonstrated that intranasally instilled solid UFP translocate along axons of the olfactory nerve into the CNS. We conclude from our study that the CNS can be targeted by airborne solid ultrafine particles and that the most likely mechanism is from deposits on the olfactory mucosa of the nasopharyngeal region of the respiratory tract and subsequent translocation via the olfactory nerve. Depending on particle size, >50% of inhaled UFP can be depositing in the nasopharyngeal region during nasal breathing. Preliminary estimates from the present results show that approximately 20% of the UFP deposited on the olfactory mucosa of the rat can be translocated to the olfactory bulb. Such neuronal translocation constitutes an additional not generally recognized clearance pathway for inhaled solid UFP, whose significance for humans, however, still needs to be established. It could provide a portal of entry into the CNS for solid UFP, circumventing the tight blood-brain barrier. Whether this translocation of inhaled UFP can cause CNS effects needs to be determined in future studies."
"Ultrafine particles (UFP, particles 50% of inhaled UFP can be depositing in the nasopharyngeal region during nasal breathing. Preliminary estimates from the present results show that approximately 20% of the UFP deposited on the olfactory mucosa of the rat can be translocated to the olfactory bulb. Such neuronal translocation constitutes an additional not generally recognized clearance pathway for inhaled solid UFP, whose significance f...

More

Bookmarks
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
V

"Particle biokinetics is important in hazard identification and characterization of inhaled particles. Such studies intend to convert external to internal exposure or biologically effective dose, and may help to set limits in that way. Here we focus on the biokinetics of inhaled nanometer sized particles in comparison to micrometer sized ones.
The presented approach ranges from inhaled particle deposition probability and retention in the respiratory tract to biokinetics and clearance of particles out of the respiratory tract. Particle transport into the blood circulation (translocation), towards secondary target organs and tissues (accumulation), and out of the body (clearance) is considered. The macroscopically assessed amount of particles in the respiratory tract and secondary target organs provides dose estimates for toxicological studies on the level of the whole organism. Complementary, microscopic analyses at the individual particle level provide detailed information about which cells and subcellular components are the target of inhaled particles. These studies contribute to shed light on mechanisms and modes of action eventually leading to adverse health effects by inhaled nanoparticles.
We review current methods for macroscopic and microscopic analyses of particle deposition, retention and clearance. Existing macroscopic knowledge on particle biokinetics and microscopic views on particle organ interactions are discussed comparing nanometer and micrometer sized particles. We emphasize the importance for quantitative analyses and the use of particle doses derived from real world exposures."
"Particle biokinetics is important in hazard identification and characterization of inhaled particles. Such studies intend to convert external to internal exposure or biologically effective dose, and may help to set limits in that way. Here we focus on the biokinetics of inhaled nanometer sized particles in comparison to micrometer sized ones.
The presented approach ranges from inhaled particle deposition probability and retention in the ...

More

Bookmarks